If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x+x^2=156
We move all terms to the left:
20x+x^2-(156)=0
a = 1; b = 20; c = -156;
Δ = b2-4ac
Δ = 202-4·1·(-156)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-32}{2*1}=\frac{-52}{2} =-26 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+32}{2*1}=\frac{12}{2} =6 $
| -13=-5+a | | -2(k-4)-4=-2(k-2) | | -43=5x-1+2x-7 | | 4x(x-1)+2x=3x-10 | | u3+ 2=5 | | 7c-2=-23 | | 2×+y=-2 | | -4x-2x-5=19 | | 3××5y=7 | | -3b+5=-16b= | | -9x=6=78 | | 112=4(7+d) | | a-2=8-a | | ((36)/(9))=(1)/(3)m(2)-10 | | 9+3n=-17 | | 49=8t-23t= | | 4/x+64=58 | | x/4+64=58 | | k−538=215 | | 9^2-3^2=x^2 | | -5(y+3)-3(y-2)=-33 | | 3q-103=71 | | -28y=10.3 | | 2x2−5=43 | | 915+35x=1500 | | 2x^2−5=43 | | 7/x+2=1/x+2 | | 3w=123 | | 3^2+x^2=9^2 | | -(x+4)=-15 | | 54+90+6x=180 | | 3(y-5)=90 |